

Journal of Molecular Catalysis A: Chemical 187 (2002) 81-93

www.elsevier.com/locate/molcata

Platinum catalyzed hydrogenation of 2-butyne-1,4-diol

M.M. Telkar, C.V. Rode*, R. Jaganathan, V.H. Rane, R.V. Chaudhari

Homogeneous Catalysis Division, National Chemical Laboratory, Pune 411008, India

Received 6 June 2001; received in revised form 5 November 2001; accepted 5 November 2001

Abstract

Hydrogenation of 2-butyne-1,4-diol (B_3D) using 1% Pt/CaCO₃ catalyst was carried out to give 2-butene-1,4-diol (B_2D) or butane-1,4-diol (B_1D) selectively or a mixture of two diols eliminating the formation of acetal, aldehyde, and alcohols as side products. In presence of ammonia, nearly complete selectivity to B_2D was obtained in a batch reactor while, in a fixed bed reactor total selectivity to B_1D was obtained. Effect of concentration of ammonia, metal loading and catalyst pre-treatment on catalyst activity and selectivity has been investigated in a batch reactor. The formation of B_1D and B_2D is explained on the basis of associative or dissociative adsorption of B_3D via carbene and carbyne type intermediates which react with adsorbed hydrogen to give the corresponding products. A kinetic model based on Langmuir–Hinshelwood (L–H) type mechanism has been proposed which shows a good agreement with experimental data.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Platinum catalyst; Hydrogenation; 2-Butene-1,4-diol; Butane-1,4-diol; Selectivity; Catalyst pre-treatment; Kinetics; Catalytic mechanism

1. Introduction

Catalytic hydrogenation of 2-butyne-1,4-diol (B₃D) is an industrially important reaction for the manufacture of *cis* 2-butene-1,4-diol (B₂D) and butane-1,4-diol (B₁D). The olefinic diol, B₂D is a starting material for the manufacture of endosulfan [1], Vitamins A and B₆ [2] while, butane diol has a wide range of applications in the polymer industry and as a raw material for the manufacture of tetrahydrofuran [3]. The earlier processes reported in the literature for butynediol hydrogenation use Ni or Ni–Cu-based catalysts under severe operating conditions (15–30 MPa pressure and 413–433 K temperature) [4]. Noble metals such as Pd, Ru, alone or with different poisons such as Zn, Pb, Cd, Cu and organic amines were also tried to obtain good

selectivity for B_2D [1,5–11]. With Pd/C as a catalyst, 60-70% selectivity to B₂D was obtained which further increased to 97-99% by addition of another metal or metal salts such as lead or lead acetate [8]. Rosso et al. [11] have reported the use of 5% Ru/C catalysts for hydrogenation of B_3D to give B_1D as a major product. Higher selectivity to saturated product B₁D, is reported by using a catalyst system without any poison, however, in such cases several side products such as γ -hydroxy butryaldehyde, *n*-butryladehyde, *n*-butanol, crotyl alcohol and acetal are known to be formed. Recently, Telkar et al. [12] have reported the kinetics of selective hydrogenation of B₃D to B₂D using supported palladium catalyst. Since both B₂D and B_1D are large scale commercial products, it would be most desirable to hydrogenate B_3D to give either B_2D or B₁D selectively or a desired mixture of B₂D and B_1D by tailoring the catalyst and operating conditions. Hydrogenation of B₃D is of fundamental significance,

^{*} Corresponding author. Tel.: +91-20-5893260.

E-mail address: rode@dalton.ncl.res.in (C.V. Rode).

due its adsorption characteristics leading to the formation of active species and their role in determining the product distribution. The aim of this work was, therefore, to study the product distribution in hydrogenation of B₃D, using Pd and Pt based catalysts. Among the several Pd- and Pt-based catalysts screened for hydrogenation of B₃D, Pt/CaCO₃ was found to avoid the formation of isomerized products. A kinetic model based on Langmuir-Hinshelwood (L-H) type mechanism has been proposed which indicates that the reaction takes place between adsorbed B₃D and H₂ for the Pt catalyst. Activity and selectivity pattern for Pt/CaCO3 catalyst in both batch and continuous operations was also studied. Batch hydrogenation experiments were conducted in an autoclave while, continuous hydrogenation was carried out in a fixed bed reactor in which both liquid reactant and H₂ gas were continuously fed to the reactor. A possible reaction pathway has also been proposed to explain the observed selectivity pattern for Pt catalyzed hydrogenation of B₃D.

2. Experimental

2.1. Catalyst preparation

The palladium and platinum supported catalysts were prepared as follows. The required quantity of PdCl₂ or PtCl₄ was dissolved in minimum amount of water, if necessary small quantity of dilute HCl was added to ensure the complete dissolution of the precursor. Under stirring conditions, the slurry of support prepared in water was added to the above solution, and temperature was maintained at 353 K. After 1 h, formaldehyde was added under stirring. Then the reaction mixture was cooled, filtered to obtain the catalyst, which was then dried at room temperature.

2.2. Batch measurement

The hydrogenation of B_3D over Pd- and Pt-supported catalysts was carried out in a 600 ml capacity autoclave (Parr interments Co., USA), which was equipped with arrangements for cooling, gas inlet/outlet and sampling of liquid phase. Automatic temperature control, variable agitation speed, safety rupture disc, high temperature cut off and pressure recording by a transducer were also provided. A reservoir for H₂ gas was used along with a constant pressure regulator for supply of hydrogen at a constant pressure to the reactor. The hydrogen consumption was measured from the pressure drop observed in the hydrogen reservoir.

In a typical hydrogenation experiment, 150 ml of 20% aqueous B_3D solution, 1.2 ml of ammonia solution (30% w/w) and 0.13 gm of Pd- or Pt-supported catalyst were charged to the reactor. The contents were first flushed with nitrogen and then with hydrogen. After the desired temperature was attained the system was pressurized with hydrogen at required pressure. The reaction was started by switching the stirrer on. The progress of the reaction was monitored by the observed pressure drop in the reservoir as a function of time. After the reaction was over as indicated by a constant hydrogen pressure in the reservoir, the reactor was cooled to room temperature and excess hydrogen was vented out safely and the reactor contents were removed for subsequent analysis.

2.3. Continuous measurement

Continuous hydrogenation experiments were also carried out in a fixed bed reactor supplied by "Geomechanique", France. For this purpose, 1% Pt/CaCO₃ powder catalyst was pelletized in the form of pellets of 2 mm diameter, which were used for fixed bed experiments. The reactor consisted of a stainless tube of 0.3 m length and 1.2×10^{-2} m, i.d. The reactor was provided with two thermocouples to measure the temperature at two different points, one at the entrance of the reactor and other at the center of the catalyst bed. The reactor was equipped with mass flow controller, pressure indicator and other control devices. A liquid storage tank was connected to the metering pump through a volumetric burette in order to measure the liquid feed rate. The other end of the reactor was connected to a gas-liquid separator through a condenser.

In a typical hydrogenation experiment, 0.04 kg of catalyst pellets were charged in a reactor, wherein the sections above and below the catalyst bed were packed with inert packing (carborundum). The reactor was flushed thoroughly with nitrogen and then with hydrogen at room temperature, before starting the reaction. After attaining the desired temperature, the reactor was pressurized with hydrogen, the liquid feed started and the samples were withdrawn from time to time.

The liquid samples withdrawn were analyzed by gas chromatograph with thermal conductivity detector using PEG 1500 (length: 3 m, i.d.: 3 mm), and Helium (30 ml/min) as a carrier gas.

3. Result and discussions

3.1. Catalytic activity

Pd and Pt catalysts on various supports were screened for their activity and selectivity in B₃D hydrogenation in a batch slurry reactor and the results are presented in Table 1. High turn over frequency (TOF) was achieved for Pd/C and Pd/Al₂O₃ catalysts giving B_1D as a major product. The total selectivity to B₁D and B₂D together was in the range of 75–80%. In addition to B₁D and B₂D, other side products formed were γ -hydroxy butyraldehyde, *n*-butyraldehyde and *n*-butanol. In case of Pd-Pb/CaCO₃ catalyst (Lindlar type) the selectivity to B₂D obtained was 77% without formation of any B_1D , however, other side products were still formed to the extent of 23%. Pt/CaCO₃ catalyst gave interesting results (Table 1, entry 4), with higher selectivity (83%) to B₂D and the products formed were only B₁D and B₂D without any other products. Fig. 1 shows a typical concentration-time profile of B₃D hydrogenation using Pt/CaCO₃ catalyst, in which the only products formed were B_1D and B2D. Addition of small amount of ammonia with Pt/CaCO₃ catalyst gave nearly complete selectivity to B₂D with a decrease in TOF, by about 20%. The activity of 1% Pt/CaCO₃ catalyst for both without and with ammonia was substantially (>60%) higher than that for 1% Pd/CaCO₃ catalyst, under the same reaction

conditions [12]. Also the formation of γ -hydroxy butyraldehyde, *n*-butyraldehyde and *n*-butanol for Pt/CaCO₃ catalyst was not observed unlike in case of Pd catalysts, possibly due to the presence of β -hydride phase [13,14].

The B₃D being an acetylenic compound is adsorbed strongly on the catalyst surface through two σ metal carbon bonds [14.15]. The solid catalyst (Pt/CaCO₃) was treated with B3D and the reaction mixture containing both B₃D and B₂D separately in an autoclave at 323 K. The catalyst samples were then isolated, FTIR of these samples in the form of KBr pellets were observed. It can be seen from Fig. 2a, that in case of pure B₃D adsorbed on the catalyst, the peak at 3333 cm^{-1} is due to the –OH while peaks at 1500 and $1128 \,\mathrm{cm}^{-1}$ are due to characteristic stretching of alkyne (-C=C-) group, respectively. These remain unchanged for a catalyst sample exposed to a mixture of B_3D and B_2D as shown in spectra (b) indicating the absence of any adsorbed B2D. However, the original peak at $1500 \,\mathrm{cm}^{-1}$, due to B₃D has shifted to $1494 \,\mathrm{cm}^{-1}$. This clearly indicates the strong adsorption of B₃D molecule on the catalyst surface, which is also evident from concentration-time profile shown in Fig. 1, in which the further hydrogenation of B_2D to B_1D does not start until B_3D is almost completely reacted. B₃D adsorbed on the catalyst surface can lead to the formation of several types of species, which can be of dissociative or associative in nature and can exist at the same time on the catalyst surface [16]. Since, such species have very short lifetime, it is very difficult to characterize them. The probable reaction pathway for the formation of B₁D and B₂D in absence of ammonia and under the conditions of the present work is shown in Scheme 1. According to this scheme, the

Table 1

Results on catalytic performance over Pd- and Pt-supported catalysts in hydrogenation of butynediol to butenediola

Serial no.	Catalyst	TOF (×10 ⁻⁴ , h^{-1})	Selectivity (%)		
			B ₁ D	B ₂ D	Others
1	1% Pd/Al ₂ O ₃	2.02	75.0	6.0	19.0
2	1% Pd/C	2.92	70.0	5.0	25.0
3	5% Pd-2.5% Pb/CaCO3	1.92	0.0	77.0	23.0
4	1% Pt/CaCO ₃ ^b	2.40	17.0	83.0	0.0
5	1% Pt/CaCO ₃	1.98	0.0	100.0	0.0

^a Reaction conditions: temperature, 323 K; pressure, 2.48 MPa; concentration of B₃D, 2.26 kmol/m³; concentration of catalyst, 0.86 kg/m³; agitation speed, 13.3 Hz; concentration of NH₃, 17.5 mmol; total volume, 1.5×10^{-4} m³.

^b Without ammonia.

Fig. 1. Typical concentration time profile for B_3D hydrogenation. Reaction conditions: temperature, 323 K; pressure, 2.4 MPa; initial concentration of B_3D , 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

dissociative and associative adsorption of B_3D , would give rise to the formation of carbyne and carbene type intermediates. Formation of B_1D is possible either directly from carbyne type intermediate or via B_2D hydrogenation through carbene species. Carbyne and carbene type of intermediates have very short life time, however, the existence of ethylidyne intermediate on Pt(111) surfaces has been established by Somorjai et al. [17] and other investigators [16–19] in acetylene hydrogenation. Formation of carbyne type species is more favored by accessible multiple sites and at high H₂ partial pressures.

As shown in Fig. 3, selectivity to B_1D increased with increase in H_2 pressure indicating more formation of carbyne species, which is also in accordance with the earlier reports [16,19]. Nearly complete selectivity to B_2D was achieved when Pt/CaCO₃-NH₃ catalyst system was used, possibly due to ammonia occupying the available vacant sites on the catalyst surface, which are responsible for the formation of carbyne species. In the present work, studies on the effect of concentration of ammonia on activity and selectivity pattern of Pt/CaCO₃ was also carried out and it was found that as the selectivity to B₂D increased from 83% to nearly 100% with increase in concentration of ammonia, from 0 to 0.004% (mol ratio of ammonia to Pt = 4.8×10^3) the activity, expressed in terms of TOF decreased from 2.5×10^4 to 1.6×10^4 h⁻¹. This indicates the inhibition of formation of carbyne type species by blocking the available vacant sites by NH₃, causing increase in B₂D selectivity.

Some experiments were carried out using 1% Pt/CaCO₃ catalyst pre-treated with B₃D solution. For this purpose, known quantities of fresh catalyst and 20% aq. B₃D solution were stirred under nitrogen atmosphere at 323 K for the desired time duration after which the reaction was continued. The results on the catalyst pre-treatment with hydrogen and B₃D on activity (TOF) and B₂D selectivity are shown in Fig. 4. These results show that the catalyst pre-treated with B₃D solution gave higher TOF (\geq 25%) than

Fig. 2. IR spectra of adsorbed B₃D and B₂D on the catalyst.

Scheme 1. Hydrogenation of B₃D in absence of ammonia.

Fig. 3. Effect of pressure on B_1D formation. Reaction conditions: temperature, 323 K; initial concentration of B_3D , 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

Fig. 4. Effect of catalyst pre-treatment on activity and selectivity. Reaction conditions: temperature, 323 K; pressure, 2.4 MPa; initial concentration of B₃D, 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³, pre-treatment time, 60 min.

that of fresh catalyst while, the selectivity to B_2D remained almost constant. This observation is quite different from that observed for Pd catalyst [12], in which B_3D pre-treatment of the catalyst that led to slight ($\approx 10\%$) decrease in the catalyst activity. This indicates different types of adsorption characteristics of B_3D on Pd and Pt catalysts.

Hydrogenation experiments were carried out with varying platinum content ranging from 0.5 to 2%. It was found that the TOF decreased from 1.5×10^4 to 1×10^4 h⁻¹ while the selectivity remained almost constant with increase in the metal loading from 0.5 to 2%. The decrease in activity with higher metal loading can be due to lower metal dispersion at higher metal loading.

Since the catalyst used in this reaction was a noble metal catalyst, it was important to study the reuse of this catalyst. In these experiments, the catalyst charged for the first reaction was filtered out and again recharged to the reactor for subsequent runs. The catalyst was found to retain its activity even after the tenth recycle without affecting the selectivity to B_2D (Fig. 5). The overall TON for the catalysts was found to be 5.24×10^5 .

3.2. Kinetic studies

Some preliminary experiments were carried out to select a range of reaction conditions suitable for studying the reaction kinetics, to establish the product distribution and material balance. The range of reaction conditions under which the present study was carried out is given in Table 2. The only product formed was B_2D , in hydrogenation of B_3D , in presence of 1%

Table 2 Range of operating conditions

Condition	Range	
Temperature (K)	323–353	
Pressure (MPa)	2.4-6.87	
Catalyst concentratiom (kg/m ³)	0.8–4	
B ₃ D concentration (kmol/m ³)	1.13-4.45	
Ammonia concentration (kmol/m ³)	0-0.215	

Fig. 5. Catalyst recycle studies for 1% Pt/CaCO₃. Reaction conditions: temperature, 323 K; pressure, 2.4 MPa; initial concentration of B₃D, 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

Pt/CaCO₃ with ammonia as a catalyst system and the material balance of the reactants (H_2 and B_3D) consumed and the product (B_2D) formed agreed to the extent of 95–98% as per the stoichiometry given below:

A typical plot of H_2 absorption versus time is shown in Fig. 6. A second-order polynomial was used to fit the curve, and the slope at zero time was taken as the initial rate of hydrogenation. Reproducibility of the rate measurement was found to be within 3–5% error as indicated by a few repeated experiments. The analysis of the initial rate data is useful in understanding the dependency of the reaction rate on individual reaction parameters and also in the evaluation of mass transfer effects. The effect of individual parameters on the initial rate are discussed below:

3.2.1. Effect of catalyst concentration

The effect of catalyst loading on the initial rate of reaction was studied in the range of 0.86-4 kg/m³ at 323 K. The initial rate was found increase from 0.235×10^{-4} to 1.25×10^{-4} kmol/m³/s when the catalyst loading increased from 0.86 to 4 kg/m³. This linear dependence with respect to catalyst loading indicates the absence of external gas–liquid mass transfer resistances. A few experiments were carried out to study the effect of agitation speed on initial rate of hydrogenation; in which the initial rate were found to be independent of agitation speed. This result also supports the above conclusion of the absence of external gas liquid mass transfer resistance under the conditions of present work.

3.2.2. Effect of pressure

Fig. 7 represents the effect of hydrogen pressure on initial rate of reaction for different temperatures using 1% Pt/CaCO₃-NH₃ catalyst system. As can be seen from this figure, the rate of reaction increased linearly with increase in H₂ partial pressure. This linear

Fig. 6. H₂ absorption vs. time data at different temperatures. Reaction conditions: pressure, 2.4 MPa; initial concentration of B₃D, 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

Fig. 7. Effect of H₂ pressure on initial rate of reaction. Reaction conditions: initial concentration of B₃D, 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

Fig. 8. Effect of concentration of B₃D on initial rate of reaction. Reaction conditions: pressure, 2.4 MPa; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

dependence of initial rate of reaction on H_2 pressure is different from that observed for Pd catalyst [12].

3.2.3. Effect of concentration of substrate

The effect of substrate concentration on initial rate of reaction is presented in Fig. 8, for three different temperatures (323, 338 and 353 K). The rate was found to decrease with an increase in initial concentration of B_3D , which indicates that the adsorption of B_3D is important and needs to be considered in the proposed rate equation.

3.2.4. Kinetic model

Based on the observed reaction trends with respect to effect of H_2 pressure and substrate concentration on initial rate of reaction, following rate equation was found to represent the observed experimental data suitably:

$$R = \frac{wk_1 A^* B}{(1 + K_{\rm B}B + K_{\rm C}C)^2} \tag{1}$$

where *w* is the concentration of catalyst (kg/m³), k_1 the reaction rate constant ((m³)²/(kmol)kgs), A^* the concentration of H₂ in the reaction mixture (kmol/m³), *B* the concentration of B₃D (kmol/m³), *C* the concentration of ammonia (kmol/m³), K_B the adsorption coefficient for B₃D, (m³/kmol), K_C the adsorption coefficient for ammonia (m³/kmol), *R* the rate of reaction (kmol/m³/s).

The above equation is based on the L–H type mechanism [20,21]. The rate data were fitted to the above rate equation using a nonlinear least square regression analysis. The optimized values of the rate parameters obtained for 95% confidence limit are given in Table 3.

Table 3 Kinetic parameters for rate Eq. (1)

Temperature	$\frac{k_1 \ ((m^3)^2/}{(kmol)kg s)}$	$K_{\rm B}~({\rm m^{3}/kmol})$	$K_{\rm C} \ ({\rm m}^3/{\rm kmol})$
323	7.228 ± 0.31	10.550 ± 0.52	57.206 ± 3.4
338	23.255 ± 1	13.30 ± 0.73	124.920 ± 6
353	33.367 ± 1.5	14.504 ± 1	143.105 ± 10

Fig. 9. Concentration time profiles (a) at different temperatures and (b) at different pressures. Reaction conditions: initial concentration of B₃D, 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

Fig. 10. Arrhenius plot. Reaction conditions: pressure, 2.4 MPa; initial concentration of B_3D , 2.26 kmol/m³; active concentration of catalyst, 6.66×10^{-3} mmol; concentration of NH₃, 17.5 mmol; agitation speed, 13.3 Hz; total volume, 1.5×10^{-4} m³.

The experimental and the predicted rates by Eq. (1)were found to agree well as shown in Fig. 7 for the data in the pressure and temperature range of 1-7 MPa and 323–353 K, respectively. The suitability of this rate model (Eq. (1)) was further tested by comparing the predicted and experimental concentration versus time data, under different temperature and pressure conditions. As shown in Fig. 9a and b, all time-data also agreed well with the model predictions indicating the validity of the rate Eq. (1) over a wide range of conditions. The temperature dependence of the rate constant and $K_{\rm B}$ is shown in Fig. 10, from which the activation energy was calculated as 63.27 kJ/mol. The adsorption coefficient for B₃D showed unusual trend of increase in the values of adsorption coefficients with increase in temperature (Fig. 10). The heat of adsorption calculated from the Arrhenius plot of $\ln K_{\rm B}$ versus 1/Twas found to be -21.45 kJ/mol. The negative value of heat of adsorption $(-\Delta H)$ indicates the endothermic chemisorption [22].

3.3. Hydrogenation of B_3D in a fixed bed reactor

Hydrogenation of B₃D was also carried out in a fixed bed reactor in which the hydrogen and aqueous solution of B₃D were contacted in a co-current down flow mode using 1% Pt/CaCO₃ catalyst in the form of pellets of 2 mm diameter. The reaction was carried out in a temperature range of 323-373 K and the feed flow rate was in the range of $20-60 \text{ cm}^3/\text{h}$. The selectivity pattern in continuos flow reactor was completely different from that observed in a batch slurry reactor. As can be seen from Table 4, selectivity to B₁D was always higher at different conversion levels (ranging from 10-100%) in a fixed bed operation than that for batch operation (entry 4, Table 1 and Fig. 2) at 323 K. There are several factors affecting the selectivity pattern in a fixed bed operation, some of which are: (i) higher intra particle diffusion resistance due to the bigger catalyst pellet size, (ii) mass transfer resistance can also be higher due to lower gas and liquid

Table 4 Activity and selectivity pattern of 1% Pt/CaCO₃ catalyst in a fixed bed reactor^a

Serial no.	<i>W</i> / <i>F</i> (h)	Conversion (%)	Selectivity to B ₁ D (%)
1	0.26	10	30
2	0.52	21	38
3	1.04	50	60
4	5.23	100	70

 a Reaction conditions: weight of catalyst, 0.1 kg; H_2 flow, 20 nl/h; H_2 pressure, 2.53 MPa.

velocities as compared to the well mixed situation in case of stirred batch operation, (iii) partial wetting of the catalyst particles, due to the evaporation and carry over of solvent, particularly at higher temperatures, (iv) formation of B_1D via carbyne type species, as discussed in Section 3.1. One or a combination of these factors can lead to a complete change in B_1D selectivity trend in a fixed bed mode of operation [23]. This is being further investigated in detail.

4. Conclusion

Platinum catalyzed hydrogenation of B_3D was found to give a mixture of B_1D and B_2D without formation of other side products, unlike the palladium catalyst. A mechanistic pathway for the formation of B_1D and B_2D has been proposed, based on the formation of carbyne and carbene type intermediates on the catalyst surface. Initial rate data were collected under various reaction conditions and L–H type rate equation has been proposed to represent the experimental data. Selectivity pattern in case of fixed bed operation was completely reversed from that observed for batch slurry operation.

Acknowledgements

One of the authors M.M. Telkar is grateful to the Council of Scientific and Industrial Research for the award of Senior Research Fellowship.

References

- [1] J.M. Winterbottom, H. Marwan, J. Viladevall, S. Sharma, S. Raymashasay, in: H.V. Blaser, A. Baiker, R. Prins (Eds.), Heterogeneous Catalysis and Fine Chemicals, Vol. IV, Stud. Surf. Sci. Catal. 108 (1997) 59.
- [2] R.V. Chaudhari, in: R.V. Chaudhari, H. Hofmann (Eds.), Proceedings of the Indo–German Workshop on High Pressure Technology Engineering, Forschungszentrum Julich GmbH, 1993, p. 197.
- [3] P.N. Rylander, in: A.R. Katritzky, O. Methcohn, C.W. Rees (Eds.), Hydrogenation Methods, Academic Press, New York, 1985.
- [4] C.J.S. Appleyard, J.F.C. Gartshore, BIOS Rep. 367 (1946) 22.
- [5] R.V. Chaudhari, R. Jaganathan, D.S. Kolhe, E. Emig, H. Hofmann, Appl. Catal. A: Gen. 29 (1987) 141.
- [6] G.C. Bond, G. Webb, J.M. Winterbottom, J. Catal. 1 (1962) 74.
- [7] R.V. Chaudhari, M.G. Parande, P.A. Ramchandran, P.H. Brahme, H.G. Vadgaonkar, R. Jaganathan, AIChE J. 31 (1985) 1891.
- [8] T. Fukuda, T. Kusama, Bull. Chem. Soc. Jpn. 31 (1958) 339.
- [9] T. Fukuda, Bull. Chem. Soc. Jpn. 31 (1958) 343.
- [10] G. Bollger, R. Boer, W. Wache, H. Gratze, W. Koerning, German Patent 2451929 (1976).
- [11] R. Rosso, C. Mazzocchia, P. Gronchi, P. Centola, Appl. Catal. 9 (1984) 269.
- [12] M.M. Telkar, C.V. Rode, V.H. Rane, R. Jaganathan, R.V. Chaudhari, Appl. Catal. A: Gen. 216 (2001) 13.
- [13] A. Janko, W. Palczewska, I.J. Szymerska, J. Catal. 61 (1980) 264.
- [14] G. Carturan, G. Facchin, G. Cocco, S. Enzo, G. Navazio, J. Catal. 76 (1982) 405.
- [15] J.P. Collman, J.W. Kang, J. Am. Chem. Soc. 89 (1967) 844.
- [16] J. Margitfalvi, L. Guczi, A.H. Weiss, J. Catal. 72 (1981) 185.
- [17] G.A. Somorjai, L.L. Kesmodel, L.H. Dubois, J. Chem. Phys. 70 (1979) 2180.
- [18] W.T. Mc Gown, C. Kemball, D.A. Whan, M.S. Scurrell, J.C.S. Faraday Trans. I 74 (1972) 632.
- [19] J.M. Moses, A.H. Weiss, K. Matusek, L. Guczi, J. Catal. 86 (1984) 417.
- [20] C.V. Rode, R. Jaganathan, S.T. Chaudhari, V.M. Bhandari, R.V. Chaudhari, Stud. Surf. Sci. Catal. 113 (1998) 851.
- [21] C.V. Rode, R.V. Chaudhari, Ind. Eng. Chem. Res. 33 (1994) 1645.
- [22] D.H. Broderick, B.C. Gates, AIChE J. 27 (1981) 663.
- [23] M.V. Rajashekharam, R. Jaganathan, R.V. Chaudhari, Chem. Eng. Sci. 53 (4) (1998) 787.